

Lecture 23: Cup and Cap product

One of the key structure that distinguishes cohomology with homology is that cohomology carries an algebraic structure so $\mathrm{H}^{\bullet}(X)$ becomes a ring. This algebraic structure is called cup product. Moreover, $\mathrm{H}_{\bullet}(X)$ will be a module of $\mathrm{H}^{\bullet}(X)$, and this module structure is called cap product.

Let R be a commutative ring with unit. We have cochain maps

$$S^{\bullet}(X;R) \otimes_{R} S^{\bullet}(Y;R) \to \operatorname{Hom}(S_{\bullet}(X) \otimes S_{\bullet}(Y),R) \to S^{\bullet}(X \times Y;R)$$

▶ the first map sends $\varphi_p \in S^p(X;R), \eta_q \in S^q(X;R)$ to

$$\varphi_p \otimes \eta_q : \sigma_p \otimes \sigma_q \to \varphi_p(\sigma_p) \cdot \eta_q(\sigma_q), \quad \sigma_p \in S_p(X), \quad \sigma_q \in S_q(X).$$

▶ the second map is dual (applying Hom(-, R)) to the Alexander-Whitney map

$$AW: S_{\bullet}(X \times Y) \to S_{\bullet}(X) \otimes S_{\bullet}(Y).$$

This leads to a cochain map

$$S^{\bullet}(X;R) \otimes_R S^{\bullet}(Y;R) \to S^{\bullet}(X \times Y;R)$$

which further induces

$$\operatorname{H}^{\bullet}(X;R) \otimes_{R} \operatorname{H}^{\bullet}(Y;R) \to \operatorname{H}^{\bullet}(X \times Y;R).$$

Cup product

Definition

Let R be a commutative ring with unit. We define the cup product on cohomology groups

$$\cup: \mathrm{H}^p(X;R) \otimes_R \mathrm{H}^q(X;R) \to \mathrm{H}^{p+q}(X;R)$$

by the composition

$$H^{\bullet}(X;R) \otimes_{R} H^{\bullet}(X;R) \longrightarrow H^{\bullet}(X \times X;R)$$

$$\downarrow^{\Delta^{*}}$$

$$H^{\bullet}(X;R)$$

Here $\Delta: X \to X \times X$ is the diagonal map.

Alexander-Whitney map gives an explicit product formula

$$(\alpha \cup \beta)(\sigma) = \alpha(p\sigma) \cdot \beta(\sigma_q)$$

for

$$\alpha \in S^p(X; R), \beta \in S^q(X; R), \sigma : \Delta^{p+q} \to X.$$

Theorem

 $H^{\bullet}(X; R)$ is a graded commutative ring with uint:

1. Unit: let $1 \in H^0(X; R)$ be represented by the cocyle which takes every singular 0-simplex to $1 \in R$. Then

$$1 \cup \alpha = \alpha \cup 1 = \alpha, \quad \forall \alpha \in \mathcal{H}^{\bullet}(X; R).$$

2. Associativity:

$$(\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma).$$

3. Graded commutativity:

$$\alpha \cup \beta = (-1)^{pq}\beta \cup \alpha, \quad \forall \alpha \in H^p(X; R), \beta \in H^q(X; R).$$

One approach is to check explicitly using Alexander-Whitney map. We give a formal proof using Eilenberg-Zilber Theorem.

First we observe that the following two compositions of Eilenberg-Zilber maps are chain homotopic

$$S_{\bullet}(X \times Y \times Z) \to S_{\bullet}(X \times Y) \otimes S_{\bullet}(Z) \to S_{\bullet}(X) \otimes S_{\bullet}(Y) \otimes S_{\bullet}(Z)$$

$$S_{\bullet}(X\times Y\times Z)\to S_{\bullet}(X)\otimes S_{\bullet}(Y\times Z)\to S_{\bullet}(X)\otimes S_{\bullet}(Y)\otimes S_{\bullet}(Z).$$

The proof is similar to Eilenberg-Zilber Theorem.

Associativity follows from the commutative diagram

Graded commutativity follows from the fact that the interchange map of tensor product of chain complexes

$$T: C_{\bullet} \otimes D_{\bullet} \to D_{\bullet} \otimes C_{\bullet}$$
$$c_{p} \otimes d_{q} \to (-1)^{pq} d_{q} \otimes c_{p}$$

is a chain isomorphism. Therefore the two chain maps

$$S_{\bullet}(X \times Y) \to S_{\bullet}(Y \times X) \to S_{\bullet}(Y) \otimes S_{\bullet}(X)$$
$$S_{\bullet}(X \times Y) \to S_{\bullet}(X) \otimes S_{\bullet}(Y) \stackrel{T}{\to} S_{\bullet}(Y) \otimes S_{\bullet}(X)$$

are chain homotopic, again by the uniqueness in Eilenberg-Zilber Theorem.

Set Y = X we find the following commutative diagram

$$\begin{split} \mathrm{H}^{\bullet}(X) \otimes \mathrm{H}^{\bullet}(X) & \longrightarrow \mathrm{H}^{\bullet}(X \times X) \\ & \hspace{0.5cm} \Big| \hspace{0.5cm} \tau \hspace{0.5cm} \Big| = \\ \mathrm{H}^{\bullet}(X) \otimes \mathrm{H}^{\bullet}(X) & \longrightarrow \mathrm{H}^{\bullet}(X \times X). \end{split}$$

which gives graded commutativity.

Theorem

Let $f: X \to Y$ be a continuous map. Then

$$f^*: \mathrm{H}^{\bullet}(Y; R) \to \mathrm{H}^{\bullet}(X; R)$$

is a morphism of graded commutative rings, i.e.

$$f^*(\alpha \cup \beta) = f^*\alpha \cup f^*\beta.$$

In other words, $H^{\bullet}(-)$ defines a functor from the category of topological spaces to the category of graded commutative rings.

Proof.

The theorem follows from the commutative diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
 & \downarrow \Delta & \downarrow \Delta \\
X \times X & \xrightarrow{f \times f} & Y \times Y.
\end{array}$$

Theorem (Künneth formula)

Assumem R is a PID, and $H_i(X;R)$ are finitely generated R-module, then there exists a split exact sequence of R-modules

$$0 \to \bigoplus_{p+q=n} \operatorname{H}^p(X;R) \otimes \operatorname{H}^q(Y;R) \to \operatorname{H}^n(X \times Y;R) \to \bigoplus_{p+q=n+1} \operatorname{Tor}_1^R(\operatorname{H}^p(X;R),\operatorname{H}^q(Y;R)) \to 0.$$

In particular, if $H^{\bullet}(X; R)$ or $H^{\bullet}(Y; R)$ are free R-modules, we have an isomorphism of graded commutative rings

$$\mathrm{H}^{\bullet}(X \times Y; R) \simeq \mathrm{H}^{\bullet}(X; R) \otimes_{R} \mathrm{H}^{\bullet}(Y; R).$$

Example

 $\mathrm{H}^{\bullet}(\mathit{S}^{n})=\mathbb{Z}[\eta]/\eta^{2}$ where $\eta\in\mathrm{H}^{n}(\mathit{S}^{n})$ is a generator.

Example

Let $T^n = S^1 \times \cdots \times S^1$ be the *n*-torus. Then

$$\mathrm{H}^{\bullet}(T^n) \simeq \mathbb{Z}[\eta_1, \cdots, \eta_n], \quad \eta_i \eta_j = -\eta_j \eta_i$$

is the exterior algebra with n generators. Each η_i corresponds a generator of $\mathrm{H}^1(\mathcal{S}^1)$.

Proposition

 $H^{\bullet}(\mathbb{CP}^n) = \mathbb{Z}[x]/x^{n+1}$, where $x \in H^2(\mathbb{CP}^n)$ is a generator.

Proof: We prove by induction n. We know that

$$\mathbf{H}^{k}(\mathbb{CP}^{n}) = \begin{cases} \mathbb{Z} & k = 2m \leq 2n \\ 0 & \text{otherwise} \end{cases}$$

Let x be a generator of $\mathrm{H}^2(\mathbb{CP}^n)$. We only need to show that x^k is a generator of $\mathrm{H}^{2k}(\mathbb{CP}^n)$ for each $k \leq n$.

Using cellular chain complex, we know that for k < n

$$\mathrm{H}^{2k}(\mathbb{CP}^n) \to \mathrm{H}^{2k}(\mathbb{CP}^k)$$

is an isomorphism. By induction, this implies that x^k is a generator of $\mathrm{H}^{2k}(\mathbb{CP}^n)$ for k < n. Poincare duality theorem (which will be proved in the next section) implies that

$$\mathrm{H}^2(\mathbb{CP}^n) \otimes \mathrm{H}^{2n-2}(\mathbb{CP}^n) \stackrel{\cup}{\to} \mathrm{H}^{2n}(\mathbb{CP}^n)$$

is an isomorphism. This says that x^n is a generator of $\mathrm{H}^{2n}(\mathbb{CP}^n)$. This proves the proposition.

Cap product

Definition

We define the evaluation map

$$\langle -, - \rangle : S^{\bullet}(X; R) \times_R S_{\bullet}(X; R) \to R$$

as follows: for $\alpha \in S^p(X;R), \sigma \in S_p(X), r \in R$,

$$\langle \alpha, \sigma \otimes r \rangle := \alpha(\sigma) \cdot r.$$

The evaluation map is compatible with boundary map and induces an evaluation map

$$\langle -, - \rangle : \mathrm{H}^p(X; R) \otimes_R \mathrm{H}_p(X; R) \to R.$$

This generalizes to

$$S^{\bullet}(X;R) \otimes_R S_{\bullet}(X \times Y;R) \to S^{\bullet}(X;R) \otimes_R S_{\bullet}(X;R) \otimes_R S_{\bullet}(Y;R) \stackrel{\langle -,- \rangle \otimes 1}{\longrightarrow} S_{\bullet}(Y;R)$$
 which induces

$$\mathrm{H}^p(X;R)\otimes_R\mathrm{H}_{p+q}(X\times Y;R)\to\mathrm{H}_q(Y;R).$$

Definition

We define the cap product

$$\cap: \mathrm{H}^{\rho}(X;R) \otimes \mathrm{H}_{\rho+q}(X;R) \to \mathrm{H}_{q}(X;R)$$

by the composition

Theorem

The cap product gives $H_{\bullet}(X;R)$ a structure of $H^{\bullet}(X;R)$ -module.

Theorem

The cap product extends naturally to the relative case: for any pair $A \subset X$

$$\cap: \mathrm{H}^p(X,A) \otimes \mathrm{H}_{p+q}(X,A) \to \mathrm{H}_q(X)$$

$$\cap : \mathrm{H}^p(X) \otimes \mathrm{H}_{p+q}(X,A) \to \mathrm{H}_q(X,A)$$

Since $S^{\bullet}(X, A) \subset S^{\bullet}(X)$, we have

$$\cap: S^{\bullet}(X,A) \times S_{\bullet}(X) \to S_{\bullet}(X).$$

We model the cap product via the Alexander-Whitney map. Then

$$\cap: S^{\bullet}(X,A) \times S_{\bullet}(A) \to 0.$$

Therefore \cap factors through

$$\cap: S^{\bullet}(X,A) \times \frac{S_{\bullet}(X)}{S_{\bullet}(A)} \to S_{\bullet}(X).$$

Passing to homology (cohomology) we find the first cap product

. The second one is proved similarly using $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$\cap: S^{\bullet}(X) \times \frac{S_{\bullet}(X)}{S_{\bullet}(A)} \to \frac{S_{\bullet}(X)}{S_{\bullet}(A)}.$$

